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Clustering is one of the widely used knowledge discovery techniques to reveal structures in a dataset that
can be extremely useful to the analyst. In iterative clustering algorithms the procedure adopted for
choosing initial cluster centers is extremely important as it has a direct impact on the formation of final
clusters. Since clusters are separated groups in a feature space, it is desirable to select initial centers
which are well separated. In this paper, we have proposed an algorithm to compute initial cluster centers
for k-means algorithm. The algorithm is applied to several different datasets in different dimension for
illustrative purposes. It is observed that the newly proposed algorithm has good performance to obtain
the initial cluster centers for the k-means algorithm.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an important tool for a variety of applications in
data mining, statistical data analysis, data compression, and vector
quantization. The goal of clustering is to group data into clusters
such that the similarities among data members within the same
cluster are maximal while similarities among data members from
different clusters are minimal. Clustering algorithms can be
broadly classified into hierarchical and non-hierarchical clustering
algorithms.

Hierarchical algorithms decompose a dataset X of n objects into
several levels of nested partitioning (clustering), represented by a
dendrogram (tree). Non-hierarchical clustering algorithms con-
struct a single partition of a dataset X of n objects into a set of k
clusters, such that the objects in a cluster are more similar to each
other than to objects in different clusters.

k-Means algorithm (Mac Queen, 1967) is the most well known
and the fast method in non-hierarchical cluster algorithms. Be-
cause of the simplicity of k-means algorithm, this algorithm is used
in various fields. k-Means algorithm is a partitioning clustering
method that separates data into k mutually excessive groups.
Through such the iterative partitioning, k-means algorithm mini-
mizes the sum of distance from each data to its clusters. k-Means
algorithm is very popular because of its ability to cluster a kind
of huge data, and also outliers, quickly and efficiently. However,
k-means algorithm is very sensitive to the designated initial start-
ing points as cluster centers. k-Means does not guarantee unique
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clustering because we get different results with randomly chosen
initial clusters. The final cluster centroids may not be the optimal
ones as the algorithm can converge into local optimal solutions.
An empty cluster can be obtained if no points are allocated to
the cluster during the assignment step. Therefore, it is quite impor-
tant for k-means to have good initial cluster centers.

Several methods proposed to solve the cluster initialization for
k-means algorithm. A recursive method for initializing the means
by running k clustering problems is discussed by Duda and Hart
(1973). A variation of this method consists of taking the entire data
into account and then randomly perturbing it k times. For the ini-
tial cluster center, Jain and Dubes (1988) applied the k-means with
several times by randomly selected initial values and selected the
average of these final cluster centers.

Bradley and Fayyad (1998) proposed the refinement algorithm
that builds a set of small random sub-samples of the data, then
clusters data in each sub-samples by k-means. All centroids of all
sub-samples are then clustered together by k-means using the k-
centroids of each sub-sample as initial centers. The centers of the
final clusters that give minimum clustering error are to be used
as the initial centers for clustering the original set of data using
k-means algorithm.

Likas et al. (2003) proposed the global k-means algorithm which
is an incremental approach to clustering which dynamically adds
one cluster center at a time through a deterministic global search
procedure consisting of N (with N being the size of the dataset)
executions of the k-means algorithm from suitable initial positions.

Khan and Ahmad (2004) proposed Cluster Center Initialization
Algorithm (CCIA) to solve cluster initialization problem. CCIA is
based on two observations, which some patterns are very similar
to each other. It initiates with calculating mean and standard
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deviation for data attributes, and then separates the data with nor-
mal curve into certain partition. CCIA uses k-means and density-
based multi scale data condensation to observe the similarity of
data patterns before finding out the final initial clusters. The exper-
iment results of the CCIA performed the effectiveness and robust-
ness this method to solve the several clustering problems.

Deelers and Auwatanamongkol (2007) proposed an algorithm
to compute initial cluster centers for k-means algorithm. They par-
titioned the data set in a cell using a cutting plane that divides cell
in two smaller cells. The plane is perpendicular to the data axis
with the highest variance and is designed to reduce the sum
squared errors of the two cells as much as possible, while at the
same time keep the two cells far apart as possible. Also they parti-
tioned the cells one at a time until the number of cells equals to the
predefined number of clusters, k. In their method the centers of the
k cells become the initial cluster centers for k-means algorithm.

The rest of the paper organized as follows. In Section 2, we pres-
ent our proposed algorithm to compute initial cluster centers for k-
means algorithm. Section 3 describes the comparison criteria those
are used in the experiments. In Section 4, the algorithm was ap-
plied to Iris, Wine, Letter and Ruspini datasets. Also the algorithm
was compared with randomly initial cluster centers. Conclusion
follows in Section 5.

2. Proposed algorithm

In this section, the proposed algorithm to compute initial clus-
ter centers for optimizing k-means algorithm is explained. This
algorithm based on the choosing the two of the p variables that
best describes the change in the dataset according to two axes.
Firstly absolute value of the variation coefficient in Eq. (1) is con-
sidered for the determination of the main axis,

_[s(x)

=

) j:1727"'7p (l)

Xj
where s(x;) and X; are the standard deviation and mean of the j var-
iable respectively. The main axis is selected as the variable which
has maximum value of the coefficient of variation. When coefficient
of the variation is used to determine the main axis, this is eliminat-
ing the problems of the size of terms and differences in measure-
ment units. After determining the main axis, the correlation
coefficient is used to determine the second axis. The correlation
coefficient between selected variable for main axis and the other
variables are compute using Eq. (2),
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Second axis is determined by the minimum absolute value of
the correlations among the main axis variable and the other vari-
ables. The first axis belongs to variable has the greatest spread in
the data and the second axis as possible should be perpendicular
to the first axis. Here, the purpose of election these two axes,
spread of the data should be provided the best explain in this bi-
dimensional feature space. Selection of two axes is not a problem
for the large data in terms of number of features and number of
patterns. However, more than two explanatory variables may need
to be selected when the number of clusters are increased.

After determining two axes for the proposed algorithm, the
mean of data points is calculated as the center of the dataset
according to selected axis

(2)

m= [)_(1 )_C”} (3)

where X; is mean according to variable of selected main axis, Xx; is
defined similarly. Euclidean distances
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are computed between each data point and the center. Then the
data point with the highest distance in c; will be selected as the first
candidate of the initial cluster center. Fig. 1 illustrates m as the
mean of data points and c¢; which has the farthest distance to m
is the candidate of the first initial cluster center.

Next, we calculate the Euclidean distance

1

dic, = ((Xu — Xe)? A+ (X — Xclu)z)z, i=12,...,n (5)

between each data points and c¢; by Eq. (5). To select a candidate for
the second initial cluster center, the same mechanism is applied
using di., instead of dj,. The data point with the highest distance
of dic, will be selected as the second initial cluster center candidate
C», as shown in Fig. 2.

To select a next c, for the candidate of the rest initial cluster
centers, di, (where r is the current iteration step) is calculated be-
tween each data points and c,_;. The Sd;; is then added to the sum
of distances as (r — 1) in rth iteration. For example, Sd;3 is calcu-
lated with Eq. (6) in third iteration.

Sdi3:dicl+dicza i:1727"'1n (6)

This accumulation scheme can avoid the nearest data points to
¢r_1 being chosen as the candidate of the next initial cluster center.
It consequently can spread out the next initial cluster centers far
away from the previous ones. The data point with the highest dis-
tance of Sd;z will be selected as the second initial cluster center
candidate c3, as shown in Fig. 3.

The process is repeated until the number of initial cluster cen-
ters equals to the predefined number of clusters. Then, cluster
membership of each points are determined according to candidate
initial cluster centers and selected two axis. For p variables, the ini-
tial cluster centers are created using the determined cluster
memberships.

3. Comparison criteria

To compare the clustering results, we will use the criteria which
are the error percentage, the Rand index and Wilks’ lambda test
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Fig. 1. Selection for first candidates of the initial cluster center.
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Fig. 2. Selection for second candidates of the initial cluster center.
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Fig. 3. Selection for third candidates of the initial cluster center.

statistic. The error percentage is calculated from number of mis-
classified observations and the total number of observations in
the datasets. The error percentage is defined as follows

Error — S x 100 (7)

where ¢ is the number of misclassified observations and n is the to-
tal number of observations.

The Rand index (Rand, 1971) has been traditionally used to
measure the degree of agreement between two data partitions. Gi-
ven a set of n objects X={x; --- X}, suppose P=p; --- px} and
Q=g --- qi} represent partitions of the objects with k-means algo-
rithm and real cluster memberships respectively. For each object
pair {x;,x;} there are four possible outcomes:

a: x; and x; are in the same partition in P and in the same parti-
tion in Q.
b: x; and x; are in different partition in P but in the same parti-
tion in Q.
c: X; and x; are in the same partition in P but in different parti-
tion in Q.
d: x; and x; are in different partition in P and in different parti-
tion in Q.

Rand index is given by,

a+d

Rand = v d

(8)
Rand index ranges from 0 to 1, where 0 means that the two parti-
tions are entirely different, and 1 means that the two partitions
are identical.

The Wilks’ lambda test statistic is given by

Py L )
|W + B|

where W is within the sum of squares and products matrix and

W + B is the total sum of squares and products matrix. Differences

between clusters are significant for small values of Wilks’ lambda

test statistics 2.

4. Experiments and results

To establish practical applicability of the proposed algorithm,
we implemented it and tested its performance on a number of
other real world datasets, the iris data, the wine recognition data,
the letter image recognition data, the Ruspini data and the Spam-
base data. We evaluated the proposed algorithm on five datasets
from UCI (http://archive.ics.uci.edu/ml/datasets.html) Machine
Learning Repository.

The Iris dataset (Fisher, 1936) has often been used as the stan-
dard for testing clustering algorithms. This dataset has three clas-
ses that represents three different varieties of Iris flowers namely
Iris setosa (I), Iris versicolor (II) and Iris virginica (III). Fifty samples
were obtained from each of the three classes, thus a total of 150
samples is available. Every sample is described by a set of four
attributes viz sepal length, sepal width, petal length and petal
width.

The Wine dataset is the result of a chemical analysis of wines
grown in the same region in Italy but derived from three different
cultivars. The analysis determined the quantities of 13 constituents
found in each of the three types of wines. There were overall 178
instances. There are 59, 71 and 48 instances in class I, class II
and class Il respectively. The classes are separable.

For the letter image recognition data, the objective is to identify
each of the large number of black-and-white rectangular pixel dis-
plays as one of the 26 capital letters in the English alphabet. The
character images were based on 20 different fonts and each letter
within these 20 fonts was randomly distorted to produce a file of
20,000 unique stimuli. Each stimulus was converted into 16 prim-
itive numerical attributes which were then scaled to fit into a range
of integer values from 0 through 15. For experimental purpose we

Table 1

Descriptive statistics for the Iris dataset.
Statistics Sepal length Sepal width Petal length Petal width
X; 5.8433 3.0573 3.7580 1.1993
s(x;) 0.8281 0.4359 1.7653 0.7622
cv; 0.1417 0.1426 0.4697 0.6356
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Table 2
The correlations among petal width and other variables.
Petal width
Sepal length 0.818
Sepal width —-0.366
Petal length 0.963

have taken 789 patterns of letter A and 805 patterns of letter D
from the dataset.

The Ruspini dataset (Ruspine, 1970) is popular to illustrate clus-
tering techniques. It consists of 75 observations on two variables
making up four natural groups including 23, 20, 17 and 15 entities
in classes I, II, Il and IV respectively.

The Spambase dataset (Arthur and Vassilvitskii, 2006) consists
of 4601 points in 58 variables and it represent features available
to an e-mail spam detection system. There are 1813 and 2788
points in spam and non-spam classes respectively.

The mean, standard deviation and variation coefficient, com-
puted for the Iris dataset are given in Table 1.

The main axis is selected as the petal width which has maxi-
mum value of the coefficient of variation according to Table 1 by
proposed algorithm. Second axis is determined by the minimum
absolute value of the correlations among the petal width and the
other variables. The correlations among the petal width and the
other variables are given in Table 2.
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The second axis is selected as the sepal width which has mini-
mum absolute value of the correlation according to Table 2 by
proposed algorithm. The data center was determined as
m = [1.1993, 3.0573] according to selected two axis. The scatter
plot for Iris dataset according to petal width and sepal width is gi-
ven in Fig. 4(a). Candidate initial cluster centers are determined
according to petal width and sepal width as shown in Fig. 4(b)-
(d) respectively. Cluster memberships of each observation in two
axes are created by using distances between each observation and
candidate initial cluster centers. The initial cluster centers are cre-
ated in n x p dimensional dataset according to the determined clus-
ter memberships. Initial cluster centers of the Iris data for k-means
algorithm are obtained as m; = [3.6516 0.2677 5.1774 1.4903],

m, = [2.9506 1.7916 6.4024 5.1193], m; = [2.7917 0.6361
5.1278 2.5722] with the proposed algorithm.

We compared clustering results achieved by the k-means algo-
rithm using random initial centers and initial centers derived by
the proposed algorithm. The clustering results of k-means using
random initial centers are the mean results over 10 runs since each
run gives different results. The comparison of initial cluster centers
computed using proposed algorithm and random initial cluster
centers, for the data sets, is shown in Table 3. We also compare
the results in terms of the classification error (%), given in Fig. 5,
from proposed algorithm with the results from CCIA algorithm
and the results from Deelers and Auwatanamongkol (2007).
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Fig. 4. Selection for candidates of the initial cluster center with proposed algorithm in Iris dataset. (a) The scatter plot for Iris data set according to petal width and sepal
width. (b) Selection for first candidates of the initial cluster center in Iris dataset. (c) Selection for second candidates of the initial cluster center in Iris dataset. (d) Selection for

third candidates of the initial cluster center in Iris dataset.
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Table 3
Comparison results between proposed algorithm and random initial centers accord-
ing to error percentage, Rand index and Wilks’ lambda test statistic.

Dataset Method Error Rand Wilks’
percentage index lambda
Iris Proposed 10.7000 0.8797 0.0322
algorithm
Random 13.8300 0.8639 0.0376
Wine Proposed 3.4000 0.9543 0.0196
algorithm
Random 10.5800 0.9018 0.0329
Letter Proposed 7.9046 0.8543 0.0877
algorithm
Random 9.7380 0.6364 0.1071
Ruspini Proposed 0 1.0000 0.0034
algorithm
Random 21.8667 0.8887 0.0160
Spambase Proposed 36.4051 0.5369 0.4171
algorithm
Random 39.3393 0.5226 0.5912
20+ cca Deelers etc [__] Proposed
151

Error{ %)
s

Iris Wine Ruspini Letter

Datasets

Fig. 5. Classification error comparisons among the three methods, CCIA, Deelers,
etc. and proposed method.

Clustering results with the k-means algorithm using the initial
centers computed by proposed algorithm suggest that we get im-
proved and consistent clusters for all dataset in comparison to
random initialization. We are getting better clustering results with
k-means algorithm using proposed algorithm.This results are bet-
ter than CCIA algorithm and proposed algorithm by Deelers and
Auwatanamongkol (2007) according to error percentages.

In the CCIA, determining the initial cluster centers is quite com-
plex because of the observations are separately classified according
to each of the variable. For example, when k = 3 clusters and p=6
variables, 3% = 729 cluster may occur initially with the CCIA. Then
these 729 clusters are reduced to k = 3 clusters by Merge-DBMSDC
(Density-Based Multi Scale Data Condensation).

5. Conclusion

We have presented an algorithm for computing initial cluster
centers in k-means algorithm. In this algorithm, two principal vari-
ables are selected according to maximum coefficient of the varia-
tion and minimum absolute value of the correlation. The reduced
dataset is partitioned one at a time until the number of cluster
equals to the predefined number of clusters. Then, cluster mem-
bership of each points are determined according to candidate ini-
tial cluster centers and selected two axis. For p variables, the
initial cluster centers are created using the determined cluster
memberships.

Also, after determined initial cluster centers and cluster mem-
bership of each of the data points according to selected two axes,
the proposed algorithm can be applied by normalizing the dataset.
Application of the proposed algorithm for the Wine dataset in this
way increases the true classification rate.

The proposed algorithm is very effective, converges to better
clustering results and almost all clusters have some data in it.
Experimental results show improved and consistent cluster struc-
tures as compared to the random initial cluster centers. Also, the
proposed algorithm is much simpler and easier to implement
according to the previously proposed algorithm in the literature.
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